Deposition of Sediments: How Can We Explain the Deposition of Sediments in Water?

Introduction
People use sedimentary rocks such as siltstone, shale, and sandstone (see Figure L10.1) for many different purposes. Siltstone, for example, is used to build homes and walls or for decorations. Shale is used to make cement, terra-cotta pots, bricks, and roof tiles. Sandstone is another sedimentary rock that is used as a building material. It is used to create floor tiles and decorative walls in homes or businesses and to create monuments and roads. Sandstone is also used as a sharpening stone for knives.

The material that makes up siltstone, shale, and sandstone comes from other rocks that have weathered over time. These rocks are therefore called clastic sedimentary rocks. As a rock weathers, it is broken into smaller pieces or sediments. These sediments are then carried to other places by wind, liquid water, or glacial ice. The sediments eventually settle out of the air or water and accumulate at a specific location. This process is called deposition, and it results in layers of different types of sediment. These layers of sediment then turn into a rock through a process called lithification.

Sediments go through compaction and cementation during lithification. Compaction happens when the individual pieces of sediment in a layer are forced together because of the combined weight of all the sediment in layers above them. Cementation happens when the dissolved minerals between the pieces of sediment dry. These minerals then bind the other pieces of sediment together to create a sedimentary rock often come from all different kinds of rocks, and therefore have different physical properties. Geologists, as a result, classify clastic sedimentary rocks based on the types of sediment found within them.

Sedimentary rocks, such as those shown in Figure L10.1, consist of layers of different types of sediments because different types of sediments fall through a fluid, such as water, at different rates. The rate at which a sediment falls through a fluid is called its settling velocity. The settling velocity of a sediment, like its texture, density, or color, is a unique physical property of that sediment. When a sediment has a settling velocity that is lower than the stream flow velocity of a river, that sediment will be carried downstream. When a sediment has a settling velocity that is higher than the stream flow velocity of a river, that sediment will sink to the bottom of the river and not move farther downstream. The stream velocity of a river at different locations, as a result, will determine where different types of sediments will accumulate and what types of sedimentary rocks will form at different locations.
It is important for geologists to understand how the different characteristics of a sediment affects its settling velocity because this physical property helps them explain how sediments move from one location to another and allows them to predict where different types of sediments will accumulate over time. Geologists can also learn more about environmental conditions of the past if they understand the factors that affect the deposition of sediments when they examine the nature and location of different types of sedimentary rock.

A sediment has many different physical properties that may or may not affect its settling velocity; these properties include particle size, shape, and density. Sediment particles can range in size from clay that is less than to 0.002 mm in diameter to large pebbles that can be well over 4 mm in diameter. Geologists often use a specific scale, such as the Wentworth scale (see Table L10.1), to classify or describe the particle size of a sediment. Shape is another physical property of a sediment, and geologists often classify or describe the shape of a sediment particle using the terms shown in Figure L10.2. Finally, the density of a sediment is defined as its mass per unit volume.

<table>
<thead>
<tr>
<th>Name</th>
<th>Particle size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pebble</td>
<td>&gt; 4</td>
</tr>
<tr>
<td>Granule</td>
<td>3.9–2.0</td>
</tr>
<tr>
<td>Very coarse sand</td>
<td>1.9–1.0</td>
</tr>
<tr>
<td>Coarse sand</td>
<td>0.9–0.5</td>
</tr>
<tr>
<td>Medium sand</td>
<td>0.49–0.25</td>
</tr>
<tr>
<td>Fine sand</td>
<td>0.24–0.125</td>
</tr>
<tr>
<td>Very fine sand</td>
<td>0.124–0.0625</td>
</tr>
<tr>
<td>Silt</td>
<td>0.0624–0.002</td>
</tr>
<tr>
<td>Clay</td>
<td>&lt; 0.002</td>
</tr>
</tbody>
</table>

In this investigation, you will have an opportunity to figure out how these three physical properties affect the settling velocity of a sediment. You will then use this information to develop a conceptual model that explains how sediments will settle in water. A conceptual model like this is useful because it allows people to not only understand why sedimentary rocks consist of layers of different materials but also predict the order of the layers that will be found in different kinds of sedimentary rocks.

**Your Task**
You will be given several different sediments. You will then explore how each type of sediment settles in a column of water over time. Your goal is to use what you know about cause-and-effect relationships and structure and function to design and carry out an investigation that will enable you to develop a conceptual model that explains how particle size, density, and shape affects the settling rate of a sediment in water. Your model, if valid or acceptable, should allow you to predict how the different types of sediments found in each mixture will accumulate at the bottom of a column of water over time.

The guiding question of this investigation is: **How can we explain the deposition of sediments in water?**
Materials
You may use any of the following materials during your investigation:

**Sediments of different sizes**
- Gravel
- Coarse sand
- Medium sand
- Fine sand

**Sediments of different shapes**
- 4 Pieces of modeling clay (each 2 g)

**Sediments of different densities**
- Glass beads (4 mm)
- Plastic beads (4 mm)
- Ball bearings (4 mm)

**Other**
- Water
- Clear plastic tube
- Rubber stopper
- Beaker (500 ml)
- Beaker (50 ml)
- Funnel
- Duct tape
- Meter stick
- Bucket
- Balance
- Stopwatch

Getting Started
You will need to design and carry out at least three different experiments to determine how the structure of a sediment affects the rate at which it will fall through a column of water. These experiments are necessary because you will need to answer three specific questions before you can develop an answer to the guiding question for this lab:

- How does particle size affect the time it takes a sediment to fall through a column of water?
- How does particle density affect the time it takes a sediment to fall through a column of water?
- How does particle shape affect the time it takes a sediment to fall through a column of water?

You can create a water column, such as the one shown in Figure L10.3, using a large plastic tube and a rubber stopper. Before you create your water column, it will be important for you to determine what type of data you need to collect, how you will collect the data, and how you will analyze the data for each experiment, because each experiment is slightly different.

To determine what type of data you need to collect, think about the following questions:

- What conditions need to be satisfied to establish a cause-and-effect relationship?
- How will you determine when a particular sediment type has settled?
- How will you determine how long it takes for a sediment to fall through a column of water?
- What information will you need to calculate the density of a particle?
- When will you need to make these measurements or observations?

To determine how you will collect your data, think about the following questions:

- What will be the independent variable and the dependent variable in each experiment?
- How will you vary the independent variable during each experiment?
- What will you do to hold the other variables constant during each experiment?
What types of comparisons will you need to make?
What scale or scales should you use when you take your measurements?
What equipment will you need to collect the data you need?
How will you make sure that your data are of high quality (i.e., how will you reduce error)?
How will you keep track of and organize the data you collect?

To determine how you will analyze your data, think about the following questions:

- What type of calculations will you need to make?
- How could you use mathematics to describe a relationship between variables?
- How could you use mathematics to determine if there is a difference between the experimental conditions or a relationship between variables?
- What types of patterns might you look for as you analyze your data?
- What type of table or graph could you create to help identify a trend in the data?

Once you have finished collecting data, your group can develop a conceptual model that explains the deposition of sediments in water. For your conceptual model to be complete, it must be able to explain how the structure of different sediments relates to how different types of sediments will move through water. It must also include information about the stream flow velocity of a body of water such as a river or lake. The stream flow velocity is how fast the water is moving in a specific direction. The stream flow velocity of water in a water column is zero, but in a river it can reach velocities of 25 km/h. Finally, and perhaps most important, you should be able to use your model to predict the order in which different types of sediments will settle at the bottom of a column of water. This type of conceptual model is useful because it enables people to understand where and when different types of sediments will accumulate over time.

**Report**

Once you have completed your research, you will need to prepare an investigation report that consists of four sections (be sure to have section headings):

1. **Introduction:** Give some background information on the topic. Explain what question were you trying to answer and include a hypothesis. (Background info, research question and hypothesis)
2. **Procedure:** What did you do during your investigation and why did you conduct your investigation in this way? (How you collected and analyzed data)
3. **Data:** Include a data table and/or graph to show your results. Be sure to include a title for your table or graph with labels for the variables.
4. **Conclusion:** What is your argument? (Claim - Evidence - Reasoning)

Your report should answer these questions in two pages or less. The report must be typed, and any diagrams, figures, or tables should be embedded into the document. Type your report on Google Docs (12 point font, double-spaced) and share it with your teacher. Your report will be graded based on the rubric in the class syllabus.